

LCRD Optical Ground Station 1

W. T. Roberts and S. Piazzolla

Jet Propulsion Laboratory, The California Institute of Technology

Laser Communications Relay Demonstration (LCRD)

Jet Propulsion Laboratory California Institute of Technology

- Optical Ground Station 1 (OGS1) is being developed to support the LCRD project
- Capable of sustained bi-directional communications
 - Up to 1.24 Gbps DPSK
 - Up to 311 Mbps PPM
- LCRD Objectives
 - Demonstrate bi-directional optical communications
 - Characterize system performance over a variety of conditions
 - Transfer optical communication technology to industry
 - Support, test and demonstrate optical communication standards
 - Demonstrate extensive multi-user networking
 - Demonstrate effectiveness of adaptive optics for communication links

OCTL Telescope

Jet Propulsion Laboratory California Institute of Technology

- 1-meter F/76 telescope in coudé configuration
- Fast-slewing El over Az mount for satellite tracking
- 4 coudé ports allow concurrent experiments

Designed for daytime operations

OGS1 System

Jet Propulsion Laboratory California Institute of Technology

- Telescope for signal collection and transmission
- Adaptive Optics for efficient signal collection
- Laser safety system
- Multiple beacons for acquisition by spacecraft
- Ground modem for signal retrieval and signal encoding
- Networking gateway for controlling services
- User simulators for evaluating system performance
- Atmospheric monitoring system to understand the Optical Channel
- Monitor and control system for control and coordination

Unique Features of OGS-1

Jet Propulsion Laboratory
California Institute of Technology

- Fast Adaptive Optical system
 - Two deformable mirrors to compensate for large stroke and high spatial frequency
 - 10 kHz wavefront sensor
 - Scoring camera for evaluation of corrected Strehl ratio

- High bandwidth networking services
 - Up to 12 simultaneous users connecting through User Services Gateway
 - Four service types
 - SymbolStream
 - BitStream
 - AOS
 - Tunnelled IP
 - Supports virtual channels
 - Supports simultaneous guest users
 - High bandwidth platform and MOC simulators
 - Schedule-driven services

Simulated by User MOC Simulator

OGS-1 Loop-Back Link

- Loop-back link is best measure of ground station performance
- Calculation of LCRD Link:
 - Calculate uplink/downlink operating points
 - · Photons/bit at receivers
 - Evaluate signal fade statistics
 - Calculate edge-to-edge curves
 - Evaluate uplink/downlink margins

Atmospheric Transmission at OGS-1

OGS-1 Wave Optics Simulation

Jet Propulsion Laboratory California Institute of Technology

- We use a wave-optics simulation to determine fading statistics on uplink/downlink beams
- We use nominal and worst case conditions in the simulation
 - Hufnagel-Valley profile with ground layer at OGS-1
 - 5-layer atmosphere assumed
 - Turbulence conditions at 500 nm at zenith
 - Nominal case r_0 =5.2 cm
 - Worst case r₀=2.7 cm
 - Uplink beam divergence: θ =20 μrad full-angle
 - Wind speed of 2.84 m/sec (nominal)
 - 5.6 m/sec (worst case)
 - Beam elevation angle from OGS-1 of 45 degrees
- OGS-1 AO modeled as 28x28 sub-apertures
 - Wavefront sensor update rate of 10 kHz
- Simulation results
 - Time series of uplink signal at flight terminal
 - Time series of downlink signal corrected by AO coupled to the Ground Modem single-mode fiber

OGS-1 Sub-Aperture Geometry

OGS-1 Loop Back Results

- Our Adaptive Optics is expected to couple 70% of the downlink signal into the Modem SMF under nominal conditions
 - 65% coupling efficiency or better 90% of links
 - Minimum 55% coupling required
- Downlink fading is averaged over large (1-m) aperture
 - □ $\sigma_i^2 = 7 \times 10^{-4}$ under nominal conditions
- Uplink fades are much worse
 - \Box $\sigma_i^2 = 0.09$ under nominal conditions
 - □ σ_i^2 = 0.29 under worst-case (90%) conditions
- Time series from wave-optics simulation are shown
 - Used to derived edge-to-edge curves
 - PPM
 - DPSK

OGS-1 Loop Back Link Margin

Jet Propulsion Laboratory
California Institute of Technology

- The relay transfer curves represent the locus of points at up/down receivers where the margin is 0 dB for given photon/bit flux
 - Lower photon flux at one end may be compensated by higher flux at other end
 - Included up/down fading statistics
 - Interleaver of 0.87 sec
 - DVB-S2 coding, code rate R=0.5
 - Required code word error rate 10⁻⁴
- DPSK more efficient than PPM
- Margins derived from relay transfer curve
 - Based on operating point
 - 10 W uplink transmit power
 - 0.5 W downlink transmit power
- Lower data rate of PPM provides more margin
- OGS-1 expected to have plenty of operating margin for DPSK and PPM links under nominal conditions

OGS-1 Loop Back Summary

- OGS1 is in development to support LCRD
 - Characterizes performance over range of atmospheric conditions
 - Supports high-bandwidth networking services
- Supports different signaling modulations
 - DPSK to demonstrate high-bandwidth links
 - PPM to demonstrate deep-space networking links
- Loop-back demonstration characterizes ground station performance
 - Wave optics simulation to calculate fade statistics
 - Incorporates predicted performance of AO System
 - Incorporates site-specific conditions
- Maximum rate links predicted to have range of viable operating points under nominal conditions
 - ~ 8 dB of symmetrical DPSK margin
 - ~12 dB of PPM margin
- We anticipate excellent performance of OGS-1 with LCRD

Acknowledgements

Jet Propulsion Laboratory California Institute of Technology

- Supporting Development
 - Mr. Arivid Croonquist System Engineer
 - Dr. Lewis C. Roberts Integrated Optical System Lead
 - Mr. Vachik Garkanian Telescope Lead
 - Mr. Thang Trinh Monitor and Control Lead
 - Dr. Malcolm W. Wright Beacon Laser Lead
 - Dr. Ryan Rogalin Ground Modem, Codec, Amplifier Interface
 - Ms. Janet P. Wu Laser Safety Lead
 - Dr. William Walsh Networking Lead
 - Dr. Dimitrios Antsos: Program Management
- Sponsorship
 - Dr. Don Cornwell NASA SCaN